
Security in Modern Web Applications
Joshua Beam
Auburn University

josh@joshbeam.com

ABSTRACT

Of all types of software applications, web applications may be the
ones for which security is of the most importance. Many web-
based applications maintain databases of users and their personal
information, allow the exchange of information among users, and
may serve as official sources of information for individuals and
organizations alike. Security breaches of a web application may
lead to attackers harvesting large amounts of user information,
eavesdropping on communications, and posting fraudulent
messages that purport to be from users or system administrators
whose accounts have been compromised.

Complicating the issue of web application security is the fact that
a number of different potential targets exist for a single web
application; in addition to the web application itself, the operating
system, web server software, programming framework, database
management system, and even unsuspecting users are potential
weaknesses for a web-based service. A number of techniques,
technical as well as non-technical in nature, have been developed
to cut down on potential security vulnerabilities in web
applications. While some attack vectors can be minimized through
the use of modern web development frameworks and
programming environments, web application developers must
possess a knowledge of a number of security related topics in
order to properly build and maintain secure web applications.

This paper will examine various security-related best practices
employed by modern web applications. Topics covered will
include setting up secure systems to host web applications on,
techniques for storing and verifying passwords, minimizing the
risk of social engineering attacks, and preventing technical attacks
such as those involving cross-site scripting and SQL injection.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]:Security and Protection – authentication, physical
security, unauthorized access.

General Terms

Security

Keywords

Web Applications, Operating Systems, Servers, Programming
Languages, Frameworks

1.INTRODUCTION

Web application security can be fairly complex in that the security
of such applications is dependent on not just the application itself,
but of a number of other pieces of software that support the
application. This paper will examine web application security at
several levels, focusing on the technical implementation and
deployment of modern web applications.

The first level is the operating system and the services it provides.
A secure web application should be built for and deployed on an
operating system that is up-to-date and configured to promote
low-level system security. Additionally, there are some key
services commonly used and packaged with the operating system
that should be configured to mitigate security risks.

The second level consists of server software, and specifically two
types of server software commonly used by web applications: the
web server, also commonly referred to as the Hypertext Transfer
Protocol (HTTP) server, and the database management system
(DBMS) server. The former is the most public gateway to the
system underlying a web-based application, and thus it should be
set up with care in order to prevent unauthorized access to system
resources, while the latter may contain large amounts of sensitive
information, and thus its security is absolutely critical.

The next level consists of the application itself, along with any
programming languages and frameworks used. While applications
created with any programming environment are susceptible to
attack, certain languages and/or frameworks may be intended to
prevent certain categories of attacks or take steps to perform
certain actions in a secure manner by default so that the
application developer does not need to be as concerned with them.

On top of these three levels of the technical implementation of a
secure web application, the human elements of security must be
taken into account. The application should present a user interface
that promotes the understanding by users of security policies that
can mitigate the risk of social engineering attacks, and everyone
involved in the operation of a web application should be aware of
social engineering tactics in order to avoid being susceptible to
them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2013 Joshua Beam

mailto:josh@joshbeam.com

2.OPERATING SYSTEM SECURITY

The first level of security in the technical implementation of a
web application is the operating system. The operating system
ultimately provides the foundation upon which the other parts of a
web application stand, and a misconfigured operating system
could give an attacker access to every part of an application.

An overview of setting up a secure operating system configuration
will be provided using Ubuntu, a Linux-based operating system
that is popular for hosting web-based applications. Specifically,
Ubuntu 13.10, the latest version available at the time of this
writing, will be used.

2.1.Secure Shell (SSH) Configuration

The tool most commonly used to remotely access and administer
servers is Secure Shell (SSH), and thus its proper configuration
should be the first matter of business after the installation of the
operating system.

One part of the SSH configuration that a system administrator
should strongly consider changing for security reasons is the port
that the service listens on. The default SSH port is 22, and thus
attackers looking for systems to try to break into frequently scan
for the availability of this port. Running SSH on port 22 is
essentially advertising that the system is a potential target for
attack [8].

The number of break-in attempts to a system can be significantly
reduced by simply moving SSH to a different port [8]. Note that
while this does not necessarily improve security (that is, it will do
little, if anything, to deter an attacker determined to break into a
particular system), it will decrease the visibility of the system
from casual attackers.

The port can be set by modifying the “Port” setting in the /etc/ssh/
sshd_config file on Ubuntu. Once the port has been changed, the
sshd service should be restarted by running the following
command:

sudo service sshd restart

A user attempting to log in to the system using the standard ssh
command-line utility can then use the -p option to specify the
proper port to connect to.

Note that when deciding on an alternate port to use for SSH, it is
advisable to use a port below 1024, if possible. The reason for this
is that ports below 1024 on Linux/UNIX can only be bound to by
processes running as root [21]. If SSH were running on a port
greater than or equal to 1024, there is a possibility that, in the
event that the real SSH daemon stopped running for any reason, a
malicious user with an account on the system could set up a fake
daemon running on that port to obtain usernames and passwords
[21].

The next aspect of SSH security to consider is what users require
access to the system through SSH in the first place. In general, as
few users as possible should be given SSH access. The SSH
daemon can be configured to give access only to certain users by
setting options such as “AllowUsers” in the /etc/ssh/sshd_config
file [11].

The obvious example of a user that should almost never be given
SSH access is root. This is the most powerful user account and its
account name is no secret, so it's the prime target of attackers
trying to break in to a system through SSH. Root logins can be

disabled by setting the “PermitRootLogin” option in /etc/ssh/
sshd_config to “no” [11].

It should be noted that, while Ubuntu sets this option to “yes” by
default, logging in as root in general is not allowed in Ubuntu by
default — users are required to use the “sudo” command to
execute commands with super-user privileges. As a result of this,
root SSH logins are effectively disabled by default.

2.2.Package and Update Management

Once a server’s operating system has been installed and SSH has
been set up properly for secure remote management, the
administrator should take proper steps to ensure that the system
has the software that it needs and that it remains up-to-date in the
event that security updates are issued.

Ubuntu uses the APT package manager, which originated in the
Debian GNU/Linux operating system that Ubuntu was originally
based on. This package manager makes it easy to install and
update software that has been packaged for Ubuntu. Installing the
popular Apache web server, for example, is as simple as running
the following command:

sudo apt-get install apache2

All packages installed through the package manager on Ubuntu
can easily be updated by running two commands:

sudo apt-get update

sudo apt-get upgrade

The first command retrieves an updated list of packages available
for Ubuntu, and the second command upgrades all installed
packages to the latest versions. Ubuntu frequently updates
packages to incorporate security fixes and other enhancements to
applications.

The above two commands can be run periodically by the system’s
administrator to keep the system up-to-date. A system can also be
configured to install updates automatically; Ubuntu includes a
package to support this functionality, which can be installed by
running the following command [5]:

sudo apt-get install unattended-
upgrades

Configuration files can then be modified to indicate what kinds of
upgrades (such as security upgrades) should be installed
automatically.

While Ubuntu’s package manager is ideal for installing and
updating certain types of software, such as the web server and
database management system, it may be desirable to install some
software through other means. One example would be Ruby and
its associated libraries/frameworks. Ruby is the programming
language that the popular Ruby on Rails web development
framework is based on, and the version packaged with Ubuntu
may not be as up-to-date as a developer would like, because the
version packaged with Ubuntu is intended to be stable and simply
support other software packaged with the operating system.

The Ruby community has developed various tools for installing
and updating Ruby installations. One of the more popular
solutions is “rbenv” [6]. This software can easily be installed by
running a few commands, and it can be used to install any version
of Ruby by running a simple command. It also allows multiple
versions of Ruby to run side-by-side on the same system, which is
useful for servers that must host multiple applications that were

developed using different versions of Ruby and/or Ruby on Rails,
which may differ greatly from version to version [6].

3.WEB SERVER SECURITY

The next piece of software that should be installed and configured
for hosting a web-based application is the web server. This section
will use the popular Apache web server as an example.

3.1.Users and Groups

The first step in securing the web server software is ensuring that
its users and groups are set up properly; in particular, the web
server must be configured to run as its own, non-root user in order
to minimize the potential damage that may result from the web
server or any applications that it serves being exploited.

By default, Ubuntu runs the Apache web server using the “www-
data” user and group, settings that can be modified by changing
the APACHE_RUN_USER and APACHE_RUN_GROUP
environment variables in the /etc/apache2/envvars configuration
file; these environment variable are in turn used by the “User” and
“Group” options in the /etc/apache2/apache2.conf file.

3.2.File System

A topic closely related to users/groups is file system security.
While the “www-data” user has limited write access to the file
system, it can still read many system configuration files that may
be of interest to attackers. For this reason, Ubuntu’s Apache
configuration file ships with the following directives intended to
secure access to the file system:

<Directory />

 Options FollowSymLinks

 AllowOverride None

 Require all denied

</Directory>

<Directory /usr/share>

 AllowOverride None

 Require all granted

</Directory>

<Directory /var/www/>

 Options Indexes FollowSymLinks

 AllowOverride None

 Require all granted

</Directory>

The first directory section above ensures that all paths beneath the
root directory are, by default, not served by Apache, as indicated
by the “Require all denied” directive within the section [1]. The
second section uses the “Require all granted” directive to allow
access to certain web-based applications packaged with the
operating system, while the last section allows access to the /var/
www directory that is the default location for user-installed web
applications to be placed in [1].

The other directives contained in the above sections of the
configuration file have security implications that are worth
discussing. First, the “AllowOverride” directive is used to specify
which Apache configuration directives can be overridden

in .htaccess files contained within a subdirectory; using
“AllowOverride None” is a secure default for the sections above,
as it effectively disables the use of .htaccess files [1].

The other directive seen above is the “Options” directive, which is
used to enable the “Indexes” and “FollowSymLinks” options for
the /var/www directory. The “Indexes” option will cause Apache
to serve directory listings when a user attempts to load a directory
that does not contain a default document file (such as index.html)
[1]. The effects of enabling this option can be seen by running the
following commands:

sudo mkdir /var/www/test

sudo touch /var/www/test/hello.txt

After running the following commands, the URL http://localhost/
test/ can be opened in a web browser on the server to see a
directory listing including the hello.txt file. For security reasons, it
may be desirable not to expose directory listings to users, and so
the system administrator should consider disabling the “Indexes”
option.

The “FollowSymLinks” option indicates that Apache should
follow symbolic links that may point to another part of the file
system [1]. The effects of this option can be seen by running the
following command:

sudo ln -s /etc /var/www/etc

The URL http://localhost/etc/ can then be opened in a web
browser on the server to see the contents of the system’s /etc
directory. Clearly this may be undesirable for security reasons, as
a misconfigured symbolic link or a malicious user with access to a
directory being served by Apache could allow users to access
other parts of the file system through their web browsers.
Removing the “FollowSymLinks” option from the “Options”
directive and restarting the Apache server will cause an HTTP 403
Forbidden message to be served instead when trying to access the
aforementioned URL through a web browser.

3.3.Secure Sockets Layer (SSL) Configuration

A common security measure implemented by web applications is
to provide secure, encrypted access through Secure Sockets Layer
(SSL). SSL is not enabled by default in Ubuntu’s Apache
configuration, but can be easily enabled by running the following
commands:

cd /etc/apache2/mods-enabled

sudo ln -s ../mods-available/
socache_shmcb.load .

sudo ln -s ../mods-available/ssl.* .

cd /etc/apache2/sites-enabled

sudo ln -s ../sites-available/default-
ssl.conf 001-default-ssl.conf

sudo service apache2 restart

The first three commands set up the symbolic links required to
have the Apache modules needed for SSL to be loaded when
Apache starts, the next two commands enable the default SSL site
configuration file included with Ubuntu’s Apache installation, and
the last command restarts the Apache server in order for the
changes to take effect.

http://localhost/test/
http://localhost/test/
http://localhost/etc/

Using SSL requires the server to have access to both the public
and private keys for an SSL certificate. Ubuntu includes a self-
signed “snakeoil” certificate, which is adequate for testing or
personal use. The following two lines in the /etc/apache2/sites-
available/001-default-ssl.conf configuration file specify the paths
to files containing the public and private keys, respectively:

SSLCertificateFile /etc/ssl/certs/ssl-
cert-snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/
ssl-cert-snakeoil.key

The public key, as its name implies, is to be publicly accessible
and so it does not need to be secured in any way. The private key,
however, must remain private; an attacker who gained access to
the private key would be able to impersonate the party to whom
the key belongs. For this reason, Ubuntu’s “snakeoil” private key
file is readable only by root, and any other certificates set up by
the system administrator should have the same file permissions.

The system administrator may wish to create a new SSL
certificate or use multiple certificates for different applications.
An SSL certificate can be created using the OpenSSL command-
line utility by running the following commands (based on
examples in [14]):

sudo openssl req -new -x509 -nodes
-newkey rsa:2048 -days 365 -out /etc/
ssl/certs/ssl-cert-mycert.pem -keyout /
etc/ssl/private/ssl-cert-mycert.key

sudo chmod 600 /etc/ssl/private/ssl-
cert-mycert.key

The first command generates a new SSL certificate that’s valid for
365 days with a 2048-bit RSA key. The user will be prompted to
enter information about their organization, contact information,
and the fully-qualified domain name (FQDN) of the server that
will use the certificate (see Figure 1). The FQDN entered should
be the domain name that will be used to access the web
application, since the certificate is associated with the FQDN to
enhance security [14].

The resulting certificate can be used as a self-signed certificate,
but if the certificate is to be used for an application that other
users will access, the system administrator will most likely want
to have the certificate signed by an authority such as Verisign; in

this case, the private key file generated can be used as a
Certificate Signing Request (CSR) that can be sent to such an
authority [15].

The SSL certificate itself specifies the public key cryptography
cipher suite (such as the aforementioned 2048-bit RSA cipher
suite), consisting of an encryption algorithm and its key size, that
is used to create a secure channel to set up other aspects of an SSL
session, including the symmetric key cryptography cipher suite
that is used to perform the bulk of the secure communications.
Apache can be configured to allow the use of a number of
different cipher suites with the “SSLCipherSuites” directive [1];
Ubuntu uses the directive as follows in the /etc/apache2/mods-
available/ssl.conf file:

SSLCipherSuite HIGH:MEDIUM:!aNULL:!MD5

“HIGH” and “MEDIUM” in the line above are collections of
cipher suites that the OpenSSL library underlying Apache’s SSL
implementation considers to have high and medium levels of
cryptographic security. The system administrator may wish to
modify the above line if a specific level of security is desired. For
example, websites that involve the transmission of very sensitive
data may be required to use the AES encryption algorithm with a
key size of at least 256 bits; the use of such a cipher suite could be
forced with the following (using cipher suite names obtained from
[12]):

SSLCipherSuite AES256-SHA:!aNULL:!MD5

The cipher suite setting can be verified by loading the site in a
web browser such as Firefox; clicking the lock icon to the left of
the address bar and clicking the “More Information” button will
display a window that includes information about the cipher suite
used for the connection (see Figure 2). The lower portion of the
window shows information about the cipher suite used for the
connection, including the encryption algorithm and key size.

While it may be desirable to use the most secure cipher suites
available, it should also be noted that older browsers may not
support such cipher suites, and so the system administrator may
need to find a balance between security and compatibility.

Figure 2. SSL connection information in Firefox.

Figure 1. Generating an SSL certificate in Ubuntu.

4.DATABASE MANAGEMENT SYSTEM
(DBMS) SECURITY

Securing the database management system (DBMS) is perhaps the
key element of web application security. Even when implementing
security measures for another part of the system, keeping the
DBMS secure is often the ultimate goal; the database could
contain large amounts of user information, and the potential for
damage could be catastrophic if an attacker gained access to it.

4.1.Choice of DBMS

The first security choice related to the database is to decide what
DBMS software to use in the first place. The choice of DBMS has
certain security implications and the developer of a web
application should consider what security features are desired
before choosing a DBMS.

Consider SQLite, for example. SQLite is a popular DBMS choice
for embedded systems and small applications in general due to its
low overhead; SQLite is implemented as a library that is linked
into applications and performs all functions related to accessing
and manipulating a database [19]. This may not be optimal for
security reasons, however; an application that requires access to a
SQLite database must have file system access to the database’s
files and all data access/manipulation is performed on the system
containing the web application itself, meaning that an attacker
could theoretically gain full access to the database by exploiting
some other weakness in the system to gain file system access.

A more secure choice for a web application would be a DBMS
such as PostgreSQL or MySQL, each of which support the use of
a client-server model. This would allow the database to reside on
a machine separate from the web server and web application,
providing an extra level of security. In the event that the system
containing the web server and web application is compromised,
the database may remain safe. In such a setup, the machine
containing the database should be set up such that it is on a local
network with the web server machine and cannot be accessed
remotely by any machine over the internet, in order to prevent
direct break-in attempts to the database.

By default, Ubuntu’s MySQL installation allows connection
attempts only from the local system by binding to 127.0.0.1, the
IPv4 localhost address, as seen in the following option in the /etc/
mysql/my.cnf file:

bind-address = 127.0.0.1

The above setting is a secure default for systems where the
database server must remain on the same system as the application
using the database; otherwise, this setting should be changed to
allow connections from the web application.

The rest of this paper will discuss database security using MySQL
5.5 (the version included with Ubuntu 13.10), a popular open-
source DBMS with native support in programming languages and
frameworks such as PHP and Ruby on Rails.

4.2.Users and Passwords

MySQL can be installed on Ubuntu by running the following
command:

sudo apt-get install mysql-server

The user will be prompted to provide a password for MySQL’s
built-in root user after running the above command.

Similarly to the web server, the DBMS server should be
configured to run under its own, non-root system user account.
Ubuntu runs the MySQL server as the “mysql” user by default, a
setting that’s configured with the following lines in the /etc/mysql/
my.cnf file:

[mysqld]

user = mysql

The DBMS generally has its own set of users separate from
operating system users, however, and this is generally the more
important aspect of security when it comes to users in the context
of a database. As mentioned above, MySQL has its own root user
account; this user can perform any task involved in administration
of the DBMS. An application using a MySQL database should
have its own MySQL user account, which has only the
permissions that the application must be able to perform.

MySQL includes a client application that can be used to perform
database administration tasks. There are several ways to log into
the MySQL server using this application; for instance, if the
MySQL root user’s password is “test”, the following command
could be used to log in:

mysql -u root -ptest

This is not considered a secure way of logging in, however; it’s
possible to see command-line arguments of running processes
using the Linux/UNIX “ps” command, and commands that are run
may be logged (the bash shell, for example, logs commands to the
.bash_history file in the user’s home directory), so the password
should not be entered on the command-line [13]. A better way of
logging in is to run the following command:

mysql -u root -p

With this command, the password is not provided on the
command-line and the “mysql” program will instead prompt the
user to enter the password for the root user [13].

As an example of creating a user account and giving it only the
permissions it needs, we will create a database called MyWebApp,
containing a “Users” table, by entering the following commands
into the “mysql” client program:

CREATE DATABASE MyWebApp;

USE MyWebApp;

CREATE TABLE Users (Username
VARCHAR(100), Password VARCHAR(100));

INSERT INTO Users
VALUES('Administrator', 'test');

We’ll now create a user called MyWebApp, with the password
“test”, to access this database:

CREATE USER MyWebApp@localhost
IDENTIFIED BY 'test';

Note that, for reasons similar to why you don’t want to enter
passwords on the command-line, MySQL commands may be
logged and you may not want to enter the password in plaintext as
above; an alternative is to provide the hash of the password
instead when creating the user, by using the “PASSWORD”
keyword [13]:

CREATE USER MyWebApp@localhost
IDENTIFIED BY PASSWORD

'*94BDCEBE19083CE2A1F959FD02F964C7AF4CF
C29';

The hash above is simply the hash of the string “test”, which in
this case was obtained by running the following command:

SELECT PASSWORD('test');

The following command can now be used to grant the user the
ability to run SELECT commands to read information from the
table:

GRANT SELECT ON MyWebApp.Users TO
MyWebApp@localhost;

The user can then run a query such as the following to access the
table’s data:

mysql> SELECT * FROM Users;

+---------------+----------+

| Username | Password |

+---------------+----------+

| Administrator | test |

+---------------+----------+

1 row in set (0.00 sec)

If the user were to attempt to insert data into the table, the
following would occur:

mysql> INSERT INTO Users
VALUES('Admin2', 'test2');

ERROR 1142 (42000): INSERT command
denied to user 'MyWebApp'@'localhost'
for table 'Users'

The web application’s developer should strive to give database
users only the permissions they need in order for the application
to function, and possibly use different DBMS user accounts for
different parts of the application (for example, the part of the
application that creates user accounts could run under a different
user than the part that verifies the username and password during
log in attempts).

4.3.Using Stored Procedures to Improve
Security

In the example of the “Users” database table above, one obvious
way of verifying a user’s log in attempt might be to run a query
such as the following, where the strings “@Username” and
“@Password” represent the username and password, respectively,
entered by the user:

SELECT COUNT(1) FROM Users WHERE
Username = @Username AND Password =
@Password;

If the count returned by the above query is not zero, then clearly a
user with the given username and password exists, and therefore
the log in attempt can continue.

The problem with this method, however, is that it may give the
user access to more information than it requires; the user has
SELECT permission for the entire table and thus is able to access
all information in the table, which could be a problem if an
attacker gained access to the user account.

A more secure solution can be achieved using stored procedures,
which are small programs that execute on the DBMS and can be
granted permissions independent of the tables that they operate on
[7]. A stored procedure called VerifyLogIn could be created using
the following commands:

delimiter ;;

CREATE PROCEDURE VerifyLogIn (IN
Username VARCHAR(100), IN Password
VARCHAR(100), OUT UserCount INT) BEGIN
SELECT COUNT(1) INTO UserCount FROM
Users WHERE Users.Username = Username
AND Users.Password = Password; END;;

delimiter ;

GRANT EXECUTE ON PROCEDURE VerifyLogIn
TO MyWebApp@localhost;

REVOKE SELECT ON TABLE Users FROM
MyWebApp@localhost;

The delimiter command is used to temporarily use two semicolons
instead of one to indicate the end of a command entered into the
“mysql” program (since a single semicolon is embedded in the
stored procedure itself). After the stored procedure has been
created, the MyWebApp user is granted permission to execute the
procedure, and the user’s SELECT permission on the Users table
is revoked. The MyWebApp user can then verify a user’s
username and password using a command such as the following:

mysql> CALL
VerifyLogIn('Administrator', 'test',
@UserCount);

Query OK, 1 row affected (0.00 sec)

mysql> SELECT @UserCount;

+------------+

| @UserCount |

+------------+

| 1 |

+------------+

1 row in set (0.00 sec)

After calling the procedure, the @UserCount variable contains the
number of users with the given username and password. The
MyWebApp user can no longer access all information in the Users
table, but can only verify whether or not a user with a given
username and password exists.

4.4.Hashing Application User Passwords

The example of the Users table used above stores the hypothetical
web application’s user passwords in plaintext. This is poor
practice from a security standpoint; an attacker who gains access
to the table has a full list of all of the application’s users and their
passwords. Some of the passwords may have been used as
passwords on other services used by the application’s users, so
such a breach has security implications for users outside of the
application itself.

A better way of storing passwords is to store hashes of them,
where the hashed forms are generated using a one-way hash
algorithm such as SHA1. Because the algorithm is one-way, the

password itself cannot be easily derived from the hash (someone
attempting to crack a password for which they have access to the
hash would have to generate hashes for many possible passwords
and compare the hashes to the hash of the desired password).

Our Users table can easily be updated to store SHA1 hashes of
passwords instead of the passwords themselves by running the
following command, using MySQL’s built-in SHA1 function [13]:

UPDATE Users SET Password =
SHA1(Password);

The VerifyLogIn stored procedure could then be modified to use
the SHA1 function on the password given as an argument to the
procedure in order to compare the hash of the given password to
the hashes stored in the Users table.

An even better method would be to generate a salt for each a
password, a randomly-generated string of bytes that is appended
to a password before generating its hash. The hash generated is
then the hash of the password and its salt; the salt would be stored
along with the hash, and the VerifyLogIn stored procedure would
be modified to append the salt to the password given as an
argument to the procedure before generating the hash for it. This
makes the process of cracking the passwords stored more difficult
for attackers by ruling out the possibility of using a dictionary of
hashes for commonly used passwords.

4.5.Encrypting Data

It may be desirable to encrypt certain types of data; for example,
if a user provides credit card information to an e-commerce
application, the application must encrypt the credit card
information in order to decrease the chances of an attacker gaining
access to the information in the event that the database is
compromised.

MySQL provides a number of functions to support the encryption
and decryption of certain database fields; in particular, the
AES_ENCRYPT and AES_DECRYPT functions perform
encryption and decryption, respectively, using the AES algorithm
with a key size of 128 bits [13]. Suppose that we wanted to add a
credit card number field to the Users table and encrypt its
contents; commands such as the following could be run:

ALTER TABLE Users ADD COLUMN
CreditCardNumber BINARY(128);

SET @Key = CAST(RPAD('MyKey', 128, '0')
AS BINARY(128));

UPDATE Users SET CreditCardNumber =
AES_ENCRYPT(CAST('1234567812345678' AS
BINARY(128)), @Key);

The following query could then be run to retrieve the decrypted
contents of the CreditCardNumber column:

mysql> SELECT
AES_DECRYPT(CreditCardNumber, @Key)
FROM Users;
+-------------------------------------+

| AES_DECRYPT(CreditCardNumber, @Key) |

+-------------------------------------+

| 1234567812345678 |

+-------------------------------------+

Of course, when using functions such as these, securing the keys
used for encryption is of utmost importance. One option would be
to store keys in a database table, preferably that is on a separate
machine from the main database, that is properly secured and use
a combination of stored procedures and user permissions to limit
access to code that needs the keys. Unique keys should also be
generated and used for each user, so that the compromise of one
user’s key does not affect other users’ information.

For applications that require more security than that provided by
the encryption functionality of the DBMS, data should be
encrypted at the file system and/or application levels instead, for
which a number of options are available.

5.APPLICATION SECURITY

The next level of security to be considered is application level
security — that is, the security of the web application itself, rather
than the security of the lower-level software that supports it.

5.1.Choice of Programming Language/
Framework

One of the first things to consider when evaluating the security
requirements of a web application is the server-side programming
language and/or framework to use to develop it. While proper
security practices must always be followed by the developer
regardless of the programming language or framework used, some
languages are better suited for web development than others and
some frameworks may provide protection against certain classes
of attacks.

High level scripting or interpreted languages are typically used for
programming web applications. While lower level languages such
as C and C++ can be used, they are susceptible to buffer overflow
attacks that higher level languages are usually not vulnerable to.
Considering that web applications deal almost exclusively with
the exchange and processing of user-provided data, and the result
of a buffer overflow could be the compromise of a tremendous
amount of user information, this is a major consideration and
lower level programming languages such as C and C++ are
generally considered unsuitable for web application development.

Popular programming languages for server-side web development
include PHP, Java, C#, Python, and Ruby. Various frameworks
have been developed on top of such languages; ASP.NET is a
commonly-used C#-based framework, Django is built on Python,
and Ruby on Rails is, as its name implies, built on Ruby. Some
frameworks encourage programming practices or provide
functionality to help mitigate the risks of certain types of attacks,
such as code injection and request forgery attacks, which will be
discussed later.

5.2.Hiding Debugging Information

Web programming frameworks often generate debugging
information that is displayed in the web browser when an error
occurs. This information is useful for developers when building
the application, as it provides context as to what part of the code
caused an error to occur.

This information can include sensitive information about the inner
working of the application, however, and so it should be shielded
from the view of outside users. The amount of information
divulged in such debugging messages varies depending on the
programming language and/or framework; PHP, for example,
typically does not reveal much information (see Figure 3), while
ASP.NET presents what’s commonly known as the “yellow screen

of death,” a verbose page exposing source code and other
information [10].

PHP’s configuration file includes the “display_errors” option
which can be used to configure whether or not error messages
should be displayed [16]. Ubuntu’s PHP configuration disables the
display of errors messages by default; developers may need to

enable it during the development and deployment of applications,
however, and should be sure to disable the option once an
application has gone live. ASP.NET applications can easily be
configured to display custom error messages to remote users
while displaying debugging information only when running an
application locally, an ideal solution for a developer working on
an application that is already in use [10].

5.3.SQL Injection

One of the most common vulnerabilities found in database-driven
web applications is the SQL injection vulnerability, a type of code
injection vulnerability involving SQL database queries and
commands. When executing a database query that incorporates
some form of user-provided input, steps must be taken to make
the input suitable for use within SQL queries, otherwise the user
will be able to craft their input in such a way that they can execute
arbitrary SQL statements of their choosing.

Consider a PHP script that must load a user’s information from
the database (using PHP’s mysqli class) when the user attempts to
log in. The simplest way to retrieve such information using the
username and password entered by the user would be something
like the following:

$query = $db->query("SELECT * FROM
Users WHERE Username = '" .
$_POST["username"] . "' AND Password =
'" . $_POST["password"] . "'");

The values of the “username” and “password” HTTP POST
variables containing the username and password entered by the
user are embedded within the SQL query that is executed. If the
user entered the expected type of input for both fields, such as the
string “Administrator” for the username and “test” for the
password, the resulting query executed would be something such
as the following:

SELECT * FROM Users WHERE Username =
'Administrator' AND Password = 'test'

If the query above returns any rows, then the application may
proceed with logging the user in. The problem is that the user may

instead enter malicious input into the username and/or password
fields instead. For example, if the user entered the following
password instead:

test' OR '' = '

The result would be that the following SQL statement would be
executed:

SELECT * FROM Users WHERE Username =
'Administrator' AND Password = 'test'
OR '' = ‘'

In the example above, the user of the web application entered a
password such that a WHERE clause that is always true has been
injected into the query. The result is that the query returns one or
more rows regardless of whether or not the username and
password are correct. The result is that a user aware of the
vulnerability can log in without knowing a correct username/
password combination.

The simplest way to prevent such an attack is to use mysqli’s
escape_string function, which inserts the appropriate single-quote
characters into a string containing user input to prevent attacks
such as the above [16]. The PHP code above can be modified such
that it looks like the following:

$query = $db->query("SELECT * FROM
Users WHERE Username = '" . $db-
>escape_string($_POST["username"]) . "'
AND Password = '" . $db-
>escape_string($_POST["password"]) .
"'");

As a result of this change, the same malicious user input described
above would cause the following query to be executed:

SELECT * FROM Users WHERE Username =
'Admin' AND Password = 'test\' OR \'\'
= \''

The backslash characters inserted before each single-quote
character entered by the user cause the single-quote characters
entered by the user to be considered part of the password that is
being searched for.

The above solution to the vulnerability works, but the developer
must be careful to ensure that all user-provided input is escaped
using the aforementioned function. This may be difficult to ensure
for an application that works with a lot of user-provided input. A
better solution would be to embed such input into queries in a
different manner, one that frees the developer from having to
manually call the escape function.

A better solution is to use prepared statements, in which
placeholders representing parameter values are replaced with the
values of the parameters themselves. The PDO class in PHP
provides such functionality [16]. The above PHP code could be
written instead as follows after connecting to the database with the
PDO class instead of the mysqli class:

$statement = $db->prepare("SELECT *
FROM Users WHERE Username = :username
AND Password = :password");

$statement->bindParam(":username",
$_FORM["username"]);

$statement->bindParam(":password",
$_FORM["password"]);

Figure 3. PHP error page.

$query = $statement->execute();

Prepared statements involve more code, but user input is
embedded within SQL statements in a different way such that
there’s less of a chance of the developer directly concatenating
input with SQL statements. The PDO class performs the proper
escaping of input itself when the bindParam function is used, so as
long as the developer is sure to use prepared statements when
inserting parameter values into SQL statements, an SQL injection
vulnerability is less likely to be introduced.

Another solution is to use an Object-Relational Mapping (ORM)
framework, which maps database objects to programming
language classes and objects in a way that allows developers to
write database access code in their programming language of
choice instead of embedding SQL statements within their code
[18]. This is an increasingly popular solution, with Ruby on Rails
including the ActiveRecord ORM framework, ASP.NET using the
Entity Framework, and a number of ORM frameworks being
developed for other languages such as PHP and Python.
Eliminating manually written SQL statements eliminates vectors
for SQL injection attacks; the downside in terms of security is that
such frameworks may not be easy to use with fine-grained
database object permissions such as those described earlier in the
paper.

5.4.Cross-Site Scripting (XSS)

An attack similar to SQL injection results from a web application
failing to properly encode user-entered data when embedding it
within Hypertext Markup Language (HTML) pages. Certain
characters must be escaped when they are to be embedded within
HTML, and failing to do so can allow malicious users to inject
custom HTML and/or JavaScript code into data that is displayed
by the web application. The injected code will then be interpreted
and executed by the browser as any other HTML/JavaScript on
the page would be; vulnerabilities such as these are called Cross-
Site Scripting (XSS) vulnerabilities [4].

Consider a PHP page that contains the following code:

<form action="." method="post">

 <p><?php echo isset($_POST["data"])
? $_POST["data"] : ""; ?></p>

 <p><textarea name="data"></
textarea></p>

 <p><input type="submit" /></p>

</form>

If the user simply enters a string such as “hello”, the string will be
displayed above the form. The user may enter their own code,
however; entering “hello” would cause the string to
“hello” to be displayed in bold text. JavaScript could even be
embedded into the page by entering something such as the
following into the text area control:

<script>while(true)
window.alert("hello");</script>

This would cause a JavaScript alert window containing the string
“hello” to be displayed repeatedly (some browsers now guard
against such attacks by allowing the user to prevent a page from
creating further alerts, as seen in Figure 4).

While displaying JavaScript alert windows is little more than an
annoyance, serious attacks can be launched through XSS

vulnerabilities. JavaScript code can be used to access cookies, for
example, which may contain sensitive user information. Code
injected through an XSS vulnerability could easily access the
contents of a cookie and send the data to a server under the
control of an attacker.

XSS vulnerabilities occur out of a failure to escape characters that
have special meaning in HTML, such as the less-than character
that signifies the beginning of an HTML tag. These characters can
be properly embedded within HTML pages by replacing them
with HTML character references. A list of the most important
character references can be found in Table 1.

Table 1. Commonly used HTML character references [20]

Strings can be properly HTML-encoded by replacing occurrences
of the characters on the left side of Table 1 with the corresponding
character references on the right side.

Server-side web programming languages and/or frameworks
typically provide functions for encoding a string as described
above. PHP’s, for instance, is called htmlspecialchars, and it can
be used in the second line of the code snippet above to prevent the
user from embedding custom HTML into the page:

<p><?php echo isset($_POST["data"]) ?
htmlspecialchars($_POST["data"]) :
""; ?></p>

Some frameworks perform automatic encoding of data when
embedding it in HTML output. The ASP.NET Razor engine for
using C# code within HTML pages, for instance, includes a
shortcut for outputting the values of variables within HTML: the
“@“ symbol can simply be prepended to a variable’s name to
embed the value of the variable within the page. This shortcut
automatically performs HTML encoding of the value [9]. The
developer should be familiar with the HTML encoding behavior
of the programming language and framework being used to
develop an application in order to avoid inadvertently embedding
raw user input within HTML pages.

Character Character Reference

< <

> >

& &

" "

Non-breaking space

Figure 4. JavaScript alert window in Firefox.

5.5.Proper Use of Hypertext Transfer Protocol
(HTTP) Methods and Query Strings

The Hypertext Transfer Protocol (HTTP) query string is a popular
mechanism for passing information from one page to another in
web applications. While it’s useful and easy to use, the developer
of a web application should be sure to use it in an appropriate
manner.

Google, for example, uses a query string parameter called “q” to
pass in a string to search for. For example, one could open the
following URL to search Google for “html5”:

https://www.google.com/?q=html5

This is an appropriate use of the query string as the information
being passed in is essentially a description of something that the
user is looking for on the site. The query string should be used to
retrieve information, but in general it should not be used to
perform actions.

One common inappropriate use of the query string is to use it to
pass user login information from one page to another. For
example:

http://mywebapp/login?username=Admin&password=abc

The biggest problem with using the query string in this way is that
query strings are generally included in web server logs and traffic
analytics tools, so the username and password of each user that
logs in would be logged in plaintext in web server traffic logs. If
an attacker somehow gained access to these log files, they would
have access to user login credentials.

Another issue is that the query string is displayed to the user in the
web browser’s address bar. A non-technical user may copy a link
containing sensitive information in the query string and give it to
someone else.

Finally, consider a query string that’s used to post content in some
way (for example, a blog web application that uses the query
string to add posts to the blog). The URL using such a query string
might look something like this:

http://mywebapp/addpost?title=My+Post&body=Hello

The above URL may be stored in the user’s web browser history,
and the user may inadvertently load the URL multiple times
without realizing that the same content has been posted multiple
times.

In general, the HTTP POST method should be used for
performing actions (such as adding, deleting, and otherwise
manipulating data) and passing sensitive user input into a page,
while the HTTP GET method should be used solely for retrieving
information [3].

5.6.Cross-Site Request Forgery (CSRF)

A class of attack closely related to the improper use of query
strings is the Cross-Site Request Forgery (CSRF) attack.

A CSRF attack typically takes advantage of the fact that logging
into a website may create a session that persists for a period of
time; if a user has an active session on a site, an attacker may be
able to cause that user to take certain actions without the user’s
knowledge [2].

Consider the example of the blog application mentioned in the
previous section; if a user is logged into the application, an

attacker may try to get the user to load a URL such as the
following to have the user post a message of the attacker’s
choosing:

http://mywebapp/addpost?
title=Fraudulent+Post&body=This+message+was+posted
+through+a+CSRF+attack

The trick for the attacker is how to get the user to load such a
URL. There are a number of ways to do this; one way to make it
less obvious what’s going on is for the attacker to create a web
page that uses the above URL as the source of an image, and then
get the user to visit the page [2]. Despite the fact that the URL
may not return an image, an HTTP GET request is still made to
the URL, and the message is posted without the user’s knowledge.

Attacks such as the one described above can be prevented by not
allowing such actions to be taken with simple HTTP GET
requests; HTTP POSTs should be used instead when adding,
deleting, or otherwise manipulating data. Although it’s more
difficult, it’s possible for HTTP POSTs to be forged as well; one
popular technique for preventing the forgery of HTTP POSTs is
for the server to generate a unique token that’s included in HTML
forms and verified when an HTTP POST is received; if the token
is not included with the request or is invalid, it can be assumed
that a CSRF attack was attempted and the request can be
discarded [2].

5.7.Use of Remote Resources

When creating a web application, the developer should be wary of
using resources from remote servers. Examples of such resources
would be images, style sheets, and JavaScript files that reside on
servers that are not under the developer’s control.

One obvious way in which this type of embedding of resources
could be exploited is if the administrator of the remote server
changed the content of the resource without informing the
developer of the application making use of the resource. An image
or style sheet could be replaced with something completely
different from what the developer intended to appear on a web
page, and malicious code could even be added to style sheets or
JavaScript files stored on remote servers.

A less obvious way in which the embedding of remote resources
could be exploited is if the administrator of the remote server
started tracking the traffic to the application that uses the remote
resources. Through the HTTP referrer header, the administrator of
a server containing a remote resource can obtain details about how
the application is being used, possibly even gaining sensitive user
information if the query string is being improperly used as
described earlier, since query string information is included in the
HTTP referrer header.

If the developer does wish to use resources stored on remote
servers, then he or she should ensure that the owner of the server
is trustworthy before using such resources.

5.8.Securing Sensitive Files

The developer of a web application should be careful not to
inadvertently place sensitive files in locations such that they are
served by the web server software with no security mechanisms in
place. In general, web applications have root directories that are
served by the web server, and standard files (files other than PHP
scripts, for example) may be served as-is when they are accessed
through the web server.

https://www.google.com/?q=html5

Consider a web application that has a file sharing component, in
which users can upload documents and send them to other users.
It may be tempting to store uploaded documents in a location
beneath the application’s root directory that’s served by the web
server so that allowing the document’s recipient to download the
file is as simple as directing them to a location such as the
following:

http://mywebapp/uploads/SecretDocument.doc

The problem with this, however, is that the web server does not
know how to verify that the user accessing the document at the
above URL is the intended recipient of the document. An attacker
may be able to guess or otherwise determine the URL for a
sensitive document that they wish to obtain and download the
document without providing the appropriate credentials.

The solution to this problem is to store such documents outside of
the application’s root web directory, in a location that the web
application can still read and write to. A script can then be created
that will verify a user’s identity using the web application’s
authentication mechanisms and write the document’s contents to
the HTTP response only if the user has access to the document.
The URL to download a file using such a script might look like
the following:

http://mywebapp/download.php?
file=SecretDocument.doc

If the user’s identity is verified and it’s determined that the user
has access to the specified file, the script can set the response type
using PHP’s “header” function and use the “readfile” function to
output the raw contents of the file to the HTTP response [16].
Note that the script should be sure to validate the filename given
in the query string in order to ensure that a user does not try to
read files other than those in the uploaded documents directory;
for example, filenames should not be allowed to start with the “/
“ character or contain the string “..” (which can be used to refer to
the root directory and the directory one level higher than the
current one, respectively). A better solution would to use numeric
identifiers to identify documents (a file could be stored as
123.doc, for example), and that way the script can simply ensure
that a valid integer has been passed in through the query string.

Another category of sensitive files that may be served through the
web server are those which should not be accessible via the web
application at all. A good example of this would be the files
generated by the popular Git version control system; a developer
may store an application’s root web files in the root of the Git
repository, which would result in the .git directory containing the
entire version control history of the application being served by
the web server [17]. A malicious user could potentially access
these files by going to a URL such as the following:

http://mywebapp/.git/

This could result in an attacker gaining access to the source code
for the application, which may not be desirable if the application
is not open source software. The damage could be more severe if
any sensitive information, such as passwords or encryption keys,
have been committed to the Git repository.

The solution is to ensure that the application’s root web files are
not stored in the root directory of the Git repository; a
subdirectory called “www” or similar could be created within the
repository, and this subdirectory is what the web server would be
configured to serve.

6.SOCIAL ENGINEERING

The final element of security to consider for web applications is
the human element. A social engineering attack occurs when an
attacker tricks a user of an application to perform some action or
reveal some sort of sensitive information by the attacker
pretending to be someone that he or she is not.

For the most part, social engineering attacks are outside of the
control of a web application’s developers, although some steps
can be taken to reduce the risks of such attacks.

One step is simply to try to educate the application’s users about
such attacks. A common social engineering attack for web
applications is for an attacker to request a user’s password,
claiming to be a system administrator or other authority figure
associated with the site. It should be made clear to users that the
application’s administrators will never contact users asking for
their passwords or other sensitive information. Additionally, if the
application has some sort of builtin messaging mechanism to
allow users to communicate with each other, the application
should provide some sort of visual indicator to distinguish system
administrators from normal users; this way, in the event that a
system administrator does need to get in contact with a user for a
legitimate purpose, the user can be assured that such
communication is indeed coming from an administrator and not
simply an attacker pretending to be one.

Education about social engineering attacks is particularly
important for system administrators and others involved in the
operation of a web-based service. They should be aware of
common social engineering tactics in order to protect themselves
and their organizations from such attacks.

Some technical steps can also be taken to reduce the risk of social
engineering attacks. One possible attack would be for an attacker
to trick a user into following a link that exploits improper query
string usage or CSRF vulnerabilities in order to perform some
action without the user’s awareness. The solution is simply to try
to minimize the occurrence of such vulnerabilities, using the
mechanisms described earlier in this paper.

Other possible ways to mitigate social engineering attacks would
be to limit the number of users that have administrative privileges
(or other types of privileges that would make a user an attractive
target for attackers) and to minimize the privileges of users that
must perform administrative functions. In general, it’s not possible
to prevent social engineering attacks completely, and so the goal is
to minimize the damage that can be done through a successful
social engineering attack.

7.CONCLUSION

As the previous sections have shown, there are a number of
factors involved in securing modern web applications. It’s not just
about writing secure code; it’s also about choosing a secure
operating system platform and keeping it up-to-date, choosing the
appropriate HTTP and DBMS server software that provide the
desired security features, and ensuring that everyone involved in
the development and maintenance of a web application is aware of
common vectors of attack.

The most rapidly evolving aspect of web application security is
that involving technical attacks against the application itself. New
variations on Cross-Site Scripting (XSS) attacks may emerge, and
entirely new classes of attacks may develop as new technologies
for web development are created and standardized.

Web application developers should be aware of the purposes of
and the relationships between all the different parts of web
applications — Hypertext Markup Language (HTML), JavaScript,
Cascading Style Sheets (CSS), server-side code vs. client-side
code, the HTTP server, the DBMS server, and more — in order to
be aware of the possibilities and the security implications
involved in using these technologies. Most technical
vulnerabilities simply involve using these technologies in creative
ways or ways in which the technology’s creators did not
anticipate. Understanding how these technologies work is the key
to knowing how they can be exploited and being able to adapt
quickly when new types of attacks emerge.

The breach of a web application can be catastrophic not only for
the application’s developers, but for its users. As such, the
implementation of proper security practices is a critical aspect of
web development, and everyone involved in the development of
web applications should familiarize themselves with common
attacks and countermeasures in order to minimize the chances of
their applications being broken into.

8.REFERENCES

1. Apache Software Foundation. 2013. Apache HTTP Server

Version 2.4 Documentation. http://httpd.apache.org/
docs/2.4/.

2. Barth, A., Jackson, C., and Mitchell, J. C. 2008. Robust
Defenses for Cross-Site Request Forgery. In
Proceedings of the 15th ACM conference on Computer
and communications security, CCS 2008, Alexandria,
Virginia, October 2008, ACM, New York, NY, 75-88.
DOI= http://dx.doi.org/10.1145/1455770.1455782

3. Berners-Lee, T., Fielding, R., Frystyk, H., Gettys, J., Leach,
P., Masinter, L., and Mogul, J. 1999. Hypertext Transfer
Protocol — HTTP/1.1. RFC 2616. http://www.w3.org/
Protocols/rfc2616/rfc2616.html.

4. CERT. 2000. Malicious HTML Tags Embedded in Client
Web Requests. CA-2000-02. http://www.cert.org/
advisories/CA-2000-02.html.

5. Community Ubuntu Documentation. 2013. Automatic
Security Updates. https://help.ubuntu.com/community/
AutomaticSecurityUpdates.

6. Cooper, P. 2011. rbenv: A Simple, New Ruby Version
Management Tool. Ruby Inside. http://
www.rubyinside.com/rbenv-a-simple-new-ruby-version-
management-tool-5302.html.

7. Harrison, G. 2007. MySQL stored procedures: next big thing
or relic of the past. Linux Journal, 2007, 164.

8. Henry-Stocker, S. 2005. Running SSH on a non-standard
port. ITworld. http://www.itworld.com/
nls_unixssh0500506.

9. Microsoft. 2012. Introduction to ASP.NET Web
Programming Using the Razor Syntax. http://
www.asp.net/web-pages/tutorials/basics/2-introduction-
to-asp-net-web-programming-using-the-razor-syntax.

10. Mitchell, S. 2009. Exception Handling Advice for ASP.NET
Web Applications. 4 Guys From Rolla. http://
www.4guysfromrolla.com/articles/081209-1.aspx.

11. Moses, P. 2006. Demons Seeking Daemons—A Practical
Approach to Hardening Your OpenSSH Configuration.
Linux Journal, 2006, 143, 3.

12. OpenSSL. 2013. ciphers(1). http://www.openssl.org/docs/
apps/ciphers.html.

13. Oracle Corporation. 2013. MySQL 5.5 Reference Manual.
http://dev.mysql.com/doc/refman/5.5/en/.

14. Paradis, P. 2009. How to Make a Self-Signed SSL
Certificate. Linode Library. https://library.linode.com/
security/ssl-certificates/self-signed.

15. Paradis, P. 2009. Obtaining a Commercial SSL Certificate.
Linode Library. https://library.linode.com/security/ssl-
certificates/commercial.

16. PHP. 2013. Runtime Configuration. PHP Manual. http://
www.php.net/manual/en/errorfunc.configuration.php.

17. Python Sweetness. 2013. Devs, please stop serving .git to the
outside world. http://pythonsweetness.tumblr.com/post/
52587443706/devs-please-stop-serving-git-to-the-
outside-world.

18. Russell, C. 2008. Bridging the Object-Relational Divide.
ACM Queue, 6, 3, 16-26. DOI= http://dx.doi.org/
10.1145/1394127.1394139

19. SQLite. 2013. SQLite is Self-Contained. http://sqlite.org/
selfcontained.html.

20. World Wide Web Consortium. 2013. The HTML syntax.
HTML5. http://www.w3.org/TR/html5/syntax.html.

21. World Wide Web Consortium. 1995. Privileged Ports. http://
www.w3.org/Daemon/User/Installation/
PrivilegedPorts.html. 

http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://dx.doi.org/10.1145/1455770.1455782
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
https://help.ubuntu.com/community/AutomaticSecurityUpdates
https://help.ubuntu.com/community/AutomaticSecurityUpdates
http://www.rubyinside.com/rbenv-a-simple-new-ruby-version-management-tool-5302.html
http://www.rubyinside.com/rbenv-a-simple-new-ruby-version-management-tool-5302.html
http://www.rubyinside.com/rbenv-a-simple-new-ruby-version-management-tool-5302.html
http://www.itworld.com/nls_unixssh0500506
http://www.itworld.com/nls_unixssh0500506
http://www.asp.net/web-pages/tutorials/basics/2-introduction-to-asp-net-web-programming-using-the-razor-syntax
http://www.asp.net/web-pages/tutorials/basics/2-introduction-to-asp-net-web-programming-using-the-razor-syntax
http://www.asp.net/web-pages/tutorials/basics/2-introduction-to-asp-net-web-programming-using-the-razor-syntax
http://www.4guysfromrolla.com/articles/081209-1.aspx
http://www.4guysfromrolla.com/articles/081209-1.aspx
http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html
http://dev.mysql.com/doc/refman/5.5/en/
https://library.linode.com/security/ssl-certificates/self-signed
https://library.linode.com/security/ssl-certificates/self-signed
https://library.linode.com/security/ssl-certificates/commercial
https://library.linode.com/security/ssl-certificates/commercial
http://www.php.net/manual/en/errorfunc.configuration.php
http://www.php.net/manual/en/errorfunc.configuration.php
http://pythonsweetness.tumblr.com/post/52587443706/devs-please-stop-serving-git-to-the-outside-world
http://pythonsweetness.tumblr.com/post/52587443706/devs-please-stop-serving-git-to-the-outside-world
http://pythonsweetness.tumblr.com/post/52587443706/devs-please-stop-serving-git-to-the-outside-world
http://dx.doi.org/10.1145/1394127.1394139
http://dx.doi.org/10.1145/1394127.1394139
http://sqlite.org/selfcontained.html
http://sqlite.org/selfcontained.html
http://www.w3.org/TR/html5/syntax.html
http://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html
http://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html
http://www.w3.org/Daemon/User/Installation/PrivilegedPorts.html

	INTRODUCTION
	OPERATING SYSTEM SECURITY
	Secure Shell (SSH) Configuration
	Package and Update Management
	WEB SERVER SECURITY
	Users and Groups
	File System
	Secure Sockets Layer (SSL) Configuration
	DATABASE MANAGEMENT SYSTEM (DBMS) SECURITY
	Choice of DBMS
	Users and Passwords
	Using Stored Procedures to Improve Security
	Hashing Application User Passwords
	Encrypting Data
	APPLICATION SECURITY
	Choice of Programming Language/Framework
	Hiding Debugging Information
	SQL Injection
	Cross-Site Scripting (XSS)
	Proper Use of Hypertext Transfer Protocol (HTTP) Methods and Query Strings
	Cross-Site Request Forgery (CSRF)
	Use of Remote Resources
	Securing Sensitive Files
	SOCIAL ENGINEERING
	CONCLUSION
	REFERENCES

