
 
Exploring Spatial Data Management in 3D Graphics and Game Engines

Joshua Beam
Auburn University

josh@joshbeam.com

Abstract

3D graphics applications and video games must
manage and use a large amount of spatial data for a
variety of tasks, including rendering, visibility
determination, collision detection, and more. A variety
of data structures and algorithms have been utilized in
game engines, each with their own strengths and
weaknesses depending on the types of spatial objects to
be managed (such as moving and static objects).

This paper will describe several data structures
for managing spatial data in real-time 3D graphics
applications, and will present results from a simulation
program developed to aid in measuring and comparing
the performance of such data structures.

1. Introduction

3D graphics applications, and particularly video
games, often involve a large amount of spatial data.
The types of spatial data that may be found in video
games include the polygons/geometry that make up 3D
models and objects, the locations of objects, and
bounding regions for the scene and objects (including
both detailed bounding regions and approximations
based on boxes, spheres, and cylinders).

In real-time 3D graphics applications, in which the
scene may be rendered more than 60 times per second,
efficiently managing and utilizing spatial data is an
integral part of the development of multiple
subsystems. Spatial data is used for tasks such as
visibility determination, collision detection, rendering,
and more.

Consider the task of collision detection. For a
scene with thousands or millions of objects, it is not
feasible to check each individual polygon against every
other polygon to test for collisions. Instead, a filter/

refine process that is commonly applied in spatial
databases [1] can be used. Approximate bounding
regions, such as minimum bounding boxes, are utilized
to quickly rule out collisions between two objects if
their bounding regions do not intersect, and, in the
event that they do intersect, more complex
comparisons between the two objects can then be
performed [1]. A spatial data structure such as an
octree or Binary Space Partitioning (BSP) tree can also
be used to group objects based on their location in 3D
space, allowing the application to quickly eliminate the
possibility of a collision between two objects that are
clearly not near each other [2].

The management of spatial data in video games is
complicated by the fact that some objects move, while
others are stationary. It may be necessary to use
different techniques for managing moving objects
versus static objects, depending on the strengths and
weaknesses of the data structures and algorithms
involved. For example, if the algorithm for setting up a
particular spatial data structure performs poorly but its
algorithms for utilizing spatial data perform very well,
it may be good to use for static objects, because the set
up process only needs to be performed once and the
resulting data structure can be precomputed and stored
for later use [2]. Such an algorithm would not be
optimal for moving objects, however, because the data
structure must be adjusted in real-time as objects move
throughout the scene, and the structure may not
perform efficiently as changes are made [2].

Given this reliance on spatial data, it’s no surprise
that game engines often apply well-known spatial data
structures and algorithms (similar to those used in
spatial database management systems) in order to
achieve optimal performance. This report will explore
several spatial data structures that are suitable for use
in game development, discussing the strengths and

mailto:josh@joshbeam.com

weaknesses of each for such applications. Simulations
will be used to determine the relative performance of
some of these data structures when managing large
amounts of both moving and static objects.

2. Data Structures

Data structures traditionally used in spatial
databases, such as the R-Tree [3], may be used in 3D
graphics applications, but several other data structures
are more frequently used. In this section, we will
discuss several of the spatial data structures that are
suitable for use in real-time 3D graphics applications.

As mentioned previously, a 3D graphics
application may need to adjust its spatial data
structures in real-time as objects move across the
scene; therefore, we are concerned not only with the
speed of traversing the data structure and accessing the
objects contained within it, but also the time required
to set up the data structure and modify it as necessary.
Note also that, although it may be possible to adjust a
data structure in real-time, it may not be possible to
adjust it in an optimal manner in real-time, and so the
data structure may not perform efficiently as changes
are made while running the application [2].

2.1. Bounding Volume Hierarchy

The Bounding Volume Hierarchy (BVH) is a
simple variation of the tree data structure that is
familiar to most computer scientists and software
engineers, where each node is associated with a
bounding volume, which may be represented by a
sphere, a box, a cylinder, or any other sort of three-
dimensional object that is appropriate [2, 4]. The
bounding volume for a node must simply enclose the
bounding volume for every one of its child nodes (or,
in the case of a leaf node, its bounding volume must
enclose the objects in the node).

Figure 1 provides a visual representation of such a
hierarchy utilizing a box and two spheres as bounding
volumes. The root node of the hierarchy is a box that
has two child nodes that are spheres, each containing
two objects. The goal is to obtain a balanced tree by
grouping a similar number of objects together based on
their proximity to each other. In this example, the two
objects in the upper left are reasonably close to each
other, so they are placed in one child node. Similarly,

the two objects in the lower right of the figure are close
to each other and placed in another child node.

The purpose of the hierarchy is to speed up the
process of querying for objects based on point data (for
example, to determine whether an object is visible to
the user or to detect collisions between objects).
Imagine that we have been given a point that happens
to lie within the green triangle in the upper left portion
of the figure; we first check to see whether or not the
point is within the root node of the hierarchy. It is, so
we next check to see which (if any) of the root’s child
nodes the point is within; we find that it is within child
node 1, so we can then perform the appropriate checks
to see whether or not the point is inside any object in
the child node. With this hierarchy, we did not need to
check the objects in child node 2 at all.

The Bounding Volume Hierarchy provides a
tremendous amount of flexibility, as there is no
restriction on the types of bounding volumes that may
be used. This data structure can lead to good
performance for static objects, for which as much
preprocessing time as is needed can be devoted to
constructing an optimal hierarchy, but is not ideal for
moving objects; when objects move, the hierarchy will
need to be reconstructed such that objects that are near
each other are grouped together in an optimal fashion,
which may require a lot of processing time when there
are many objects [2]. This required processing time

Figure 1. Bounding Volume Hierarchy

may make the data structure infeasible for managing
moving objects in real-time.

2.2. Octree

The octree is the natural three-dimensional
extension of the quadtree (a popular data structure for
organizing two-dimensional spatial data), in which
each node is represented by a box and may be
subdivided into eight equally sized child nodes [2, 5].

The root node is a box that encloses the entire
space of the scene. This node is split in the middle of
each of the three dimensions, resulting in eight child
nodes. This process may be repeated recursively, until
a node contains no more than one object, or until the
leaf nodes reach a minimum size, which can prevent
excessive splitting of nodes when objects are clustered
together.

F igure 2 shows a top-down graph ica l
representation of an octree (which, in this two-
dimensional representation, appears the same as a
quadtree would). The outer-most square represents the
root node of the octree, which is the first node to be
subdivided into child nodes. Of these child nodes, only
the one in the bottom right contains more than one
object and needs to be subdivided further, so it is the
second node to be split.

At this point, no node in Figure 2 contains more
than one object, so splitting can stop there [2]. Ending
the splitting process this way results in leaf nodes with
non-uniform sizes. Another option is to keep splitting
until each leaf node reaches a certain minimum size,
resulting in leaf nodes with uniform sizes (Figure 3).
The latter method is advantageous when there are
moving objects because the entire octree can be built
upfront without nodes having to be added and/or
removed as objects are added, removed, or
repositioned throughout the scene.

The key advantage of the octree compared to the
Bounding Volume Hierarchy is its predictable structure
[2]. There is no need for a complex mechanism to
determine the optimal way to divide each node; either
a node needs to be divided or it doesn’t, depending on
the number of objects that it encloses and/or its size.
This makes the data structure effective for managing
moving objects as well as static objects.

2.3. Binary Space Partitioning (BSP) Tree

The Binary Space Partitioning (or BSP) Tree is a
binary tree structure in which each node divides space
along a plane, resulting in two child nodes that
represent space on either side of the plane, which may
be boxes in the case of an axis-aligned BSP tree [2, 6].

Figure 2. Octree (non-uniform leaf nodes)

Figure 3. Octree (uniform leaf nodes)

Typically, this dividing continues recursively until each
leaf node of the tree contains only one object.

A graphical representation of a BSP tree can be
seen in Figure 4. In this example, the enclosing square
represents the root node of a BSP tree containing five
objects. The root node is first divided along the plane
represented by line 1, resulting in two child nodes, one
of which contains the star at the bottom, and the other
containing the other four objects. The latter node is
split along the plane represented by line 2, resulting in
two child nodes containing two objects each, and these
child nodes are finally split along the planes
represented by lines 3 and 4 to obtain the final BSP tree
containing just one object per leaf node.

While the BSP tree described above is valid, it is
not optimal, because one child of the root node
contains just one object while the other contains four;
it is preferable to achieve a more balanced BSP tree for
performance reasons, and coming up with such an
optimal tree may require extensive processing if there
are many objects [2, 6]. For this reason, BSP trees are
better suited for managing static objects, rather than
moving objects.

2.4. k-d Tree

The last data structure that we will discuss is the
k-d Tree, a binary tree structure that stores k-

dimensional points [7, 8]. In our case, k would be equal
to three, for three dimensions.

Each node in a k-d Tree represents a point, and has
two child nodes, which can be called left and right.
Each node also specifies a dimension d such that 1 ≤ d
≤ k. This dimension is used to divide space between the
left and right child nodes of a node; for any point p
stored beneath a node, if that point has a lesser value in
dimension d than the point that the node represents,
then p should be stored somewhere in the left child of
the node, otherwise it should be stored in the right
child of the node [7, 8].

This is illustrated in Figure 5. In this example,
point 1 is the root node of the tree, and its d value is 2
to specify the Y dimension. The point below the
horizontal line intersecting point 1 becomes the left
child of point 1, and one of the points above can be
chosen as the right child. Point 2 is chosen as the right
child, and its d value is 1 to specify the X dimension,
so the remaining point to the left of the vertical line
intersecting point 2 becomes the left child of point 2.
There is no right child for point 2 because there are no
points to the right of the vertical line.

This data structure has traditionally been used for
static data, but there has been research into generating
k-d trees dynamically [8].

Figure 4. Binary Space Partitioning Tree

Figure 5. k-d Tree

3. Evaluating the Data Structures

Now that we understand some of the available
options for spatial data structures that can be utilized in
3D graphics applications, we can compare them to
determine which ones give the best performance in a
given scenario.

One way to accomplish this is to set up a scene
containing many objects, both static and moving, and
to measure the performance of the scene when utilizing
different combinations of data structures. For this
paper, that task was accomplished with the aid of a
custom program that was developed to simulate such a
scene [9]. The program features a scene with many
objects, and allows the user to select different data
structures to use for static and moving objects in order
to see how each combination performs. A screenshot of
the program can be seen in Figure 6.

3.1. Program Functionality

The program is a Mac OS X application written in
the Swift programming language. It uses OpenGL for
graphics rendering. At the top of the program’s user
interface are three dropdown lists, for selecting a static
object data structure, a moving object data structure,
and the number of objects to include in the scene (half
of the selected number are created as static objects,
while the other half consists of moving objects).

The bottom of the window includes checkboxes
for enabling/disabling scene rendering, tree rendering,
and collision detection. Disabling scene rendering can

be used to ensure that graphics rendering is not the
bottleneck when using the program to evaluate data
structures. Tree rendering can be used to visualize the
data structures that the program generates. Enabling
and disabling collision detection can be used to verify
that querying the data structure for intersecting objects
has the biggest impact on performance. The counter in
the lower right corner of the window shows the
number of milliseconds spent processing each frame
that is rendered; for example, when rendering a scene
containing many objects, the program may spend 300
milliseconds per frame if collision detection is enabled,
but only 100 milliseconds per frame if it is disabled.
This shows that the performance of the spatial data
structures containing objects is critical to the overall
performance of the simulation.

The program also includes the ability to
automatically measure the performance of each
combination of static object data structure, moving
object data structure, and number of objects, exporting
the results to a Comma-Separated Values (CSV) file
that can then be imported into a spreadsheet and used
to generate charts. This functionality was used to
generate the charts that appear later in this paper.

3.2. Design and Implementation

The program’s source code was designed to allow
for easy modification and addition of data structures.
Each data structure implemented in the program
conforms to a Swift protocol named SpatialTree, which
is defined as follows:

protocol SpatialTree {
 var box: Box { get }
 var subtrees: [SpatialTree] { get }
 var objects: Set<SpatialObject>{ get }
 func optimize()
 func addObject(obj: SpatialObject)
 -> Bool
 func removeObject(obj: SpatialObject)
 -> Bool
}

Every class that implements a data structure

conforms to the above protocol, allowing one data
structure to easily be replaced with another. This
interface also simplifies the process of implementing
new data structures.

An instance of a class implementing the
SpatialTree protocol represents a node in a tree-based

Figure 6. Simulation Program

data structure, such as those presented earlier in this
paper. Each node has a bounding box, any number of
subtrees (each node can be considered the root of its
own tree, hence child nodes are referred to as subtrees
in the code), and a set of objects contained in the node,
represented by instances of the SpatialObject class.

As discussed earlier, some data structures, such as
the BSP tree, may be optimized for performance
reasons. Data structures may implement the
SpatialTree protocol’s optimize function in order to
optimize their structure. The simulation program calls
this function after generating trees of static objects, but
not for trees of dynamic objects, since dynamic objects
move throughout the scene as the program runs and the
optimization code may be too costly to keep running as
objects move. For data structures that do not require
optimization code (such as the octree), this function
may do nothing.

The addObject and removeObject functions
simply add an object to or remove an object from the
data structure. Additional functionality that is common
to each data structure is implemented in a Swift
protocol extension. For example, the updateObject
function will remove an object and add it back to the
data structure taking its current position into account,
which may have changed since the object was
previously added to the data structure if it is a moving
object. The findIntersectingObjects function will return
a set of objects contained in the data structure that
intersect the given object.

The functions defined by the SpatialTree protocol
operate on objects represented by the SpatialObject
class. The most important property of this class is
boundingVolume, which represents the object’s
bounding volume. This property is always a sphere
(consisting of a three-dimensional position and a
radius) in the simulation program, since all of the static
and dynamic objects that are generated are spheres.

3.3. Data Structure Implementation

When it came time to implement data structures
for the simulation program, the decision was made to
focus on the octree and the axis-aligned BSP tree, as
they presented the most different approaches among
the data structures discussed in this paper, and the
other data structures are similar to them; an octree can
be seen as a more rigidly structured Bounding Volume
Hierarchy, while the k-d tree is a variant of the axis-

aligned BSP tree [2]. For the exact details of the
included data structure implementations, refer to the
source code for the simulation program [9].

A portion of the Octree class definition is included
below:

class Octree: SpatialTree {
 var box: Box
 var subtrees: [SpatialTree] = []
 var objects = Set<SpatialObject>()

 var minSize: Float

 init(_ box: Box, _ minSize: Float =
10.0) {
 self.box = box
 self.minSize = minSize
 }

 var subBoxes: [Box] {
 let min = box.min
 let max = box.max
 let mid = box.mid

 return [
 Box(min: Vector3(min.x, min.y,
min.z), max: Vector3(mid.x, mid.y,
mid.z)),
 ...
]
 }

 private func split() {
 let size = box.size
 if size.x < minSize &&
 size.y < minSize &&
 size.z < minSize {
 return
 }

 subtrees =
subBoxes.flatMap({ Octree($0, minSize) })

 ...
 }

 ...
}

As mentioned in Section 2.2, there are two
methods that can be utilized for octree construction:
either tree nodes can be created and removed as needed
when objects are added to or removed from the data
structure, or all nodes can be created upfront so that
they do not need to be created and removed
dynamically. During the development of the simulation
program, both methods were tested, and they were
found to be similar in performance, so the first method

was used in the final implementation of the data
structure. The subBoxes property in the code above
returns an array of the eight bounding boxes for the
subtrees of the current octree node (for brevity, the
construction of only one such box is shown in the code
above; the construction of the other seven boxes is
similar). The split function then uses these bounding
boxes to create the subtrees if the tree has not reached
a given minimum node size in each dimension.

The addObject function from the Octree class is
shown below:

func addObject(obj: SpatialObject)->Bool {
 if objects.contains(obj) {
 return true
 }

 if !objectInTreeBox(obj) {
 return false
 }

 objects.insert(obj)

 if subtrees.count == 0 {
 if objects.count > 1 {
 split()
 }
 } else {
 for subtree in subtrees {
 subtree.addObject(obj)
 }
 }

 return true
}

When an object is added to a leaf node of the tree
(that is, the node has zero subtrees), the node will be
split into eight subtrees if there are now multiple
objects inside of it; otherwise, if the node has already
been split, then the object is recursively added to any
subtrees that it intersects.

The removeObject function includes logic to
merge a node by removing its subtrees:

func removeObject(obj: SpatialObject)
 -> Bool {
 if objects.remove(obj) == nil {
 return false
 }

 if subtrees.count != 0 {
 if objects.count < 2 {
 merge()
 } else {
 for subtree in subtrees {
 subtree.removeObject(obj)

 }
 }
 }

 return true
}

If removing an object from a node results in it
having fewer than two objects, then the node is
merged; otherwise, the object is recursively removed
from the node’s subtrees.

The implementations of the addObject and
removeObject functions in the BSPTree class are
similar, although the method of splitting a BSP node is
different. When a BSP leaf node has a second object
added to it, the node is split in the dimension which has
the greatest distance between the two objects.

It should be noted that splitting and merging BSP
nodes in real-time as objects are added to and removed
from the tree will result in the tree becoming
unbalanced over time [2]. The BSPTree class
implements the optimize function to alleviate this for
static objects; it attempts to optimize the tree such that
each of the two subtrees of a node containing multiple
objects will contain roughly half of the objects
contained in the node. Rebuilding the tree in this way
results in optimal performance when accessing it.

4. Simulation Results

We will now take a look at some results from the
simulation program. These results were obtained by
running the program on an Apple MacBook Pro
computer containing a 2.3 GHz Intel Core i5 processor
and 8 GB of memory. Figure 7 shows the performance

Figure 7. Results with 32 to 512 objects

of different data structure combinations with 32 to 512
objects.

The legend at the top of the figure shows different
combinations of data structures represented in the
chart, where the static object data structure is given
before the slash and the moving object data structure is
after. The horizontal axis shows the number of objects
along the bottom of the figure, while the vertical axis
shows the number of milliseconds required for
processing each frame along the left side of the figure,
so smaller values are better. For smaller numbers of
objects, as represented in this chart, using a BSP tree
for both static and moving objects gives the best
results.

For larger numbers of objects, however, we see
different results. Figure 8 shows the performance of the
data structures for 8,192 objects.

With a large number of objects, the octree
performs better, with the best performance seen when
using an octree for both static and moving objects.

A possible explanation for this is the fact that there
is more overhead involved in checking for
intersections between objects and tree node bounding
volumes in an octree. Each node that has subtrees has
exactly eight subtrees which all must be checked when
checking for intersecting objects, which makes a large
impact when there are fewer objects.

As the number of objects increases, this overhead
has a lesser impact, and the octree’s ability to eliminate
a larger fraction of space from consideration at each
level of the tree results in improved performance. The
predictable structure of the octree may also contribute
to this improved performance as the number of objects

increases, because there is less work involved in
determining how best to split each node.

As shown in the code for the Octree class, one of
the parameters for the data structure is a minimum
node size, which causes the class to stop subdividing
once a node has reached that size in each dimension.
For the results shown in Figure 7 and Figure 8, a value
of 25 was used. Another test was run to compare
octrees with different values for this size; Figure 9
shows the results, again when processing a scene with
8,192 objects (the minimum node size is shown in
parentheses in the legend above the chart; the same
size was used for both static and moving objects).

The optimal minimum node size depends
primarily on the proximity of the objects in the scene.
Of the minimum node sizes tested with the simulation
program, the best performance is seen with a value of
10, which results in processing times about twice as
fast as with values of 25 or 2.

The minimum node size also helps explain why
octrees perform better than BSP trees with a large
number of objects in the simulation program: the BSP
tree is subdivided until each object has its own leaf
node, whereas the octree can end up with leaf nodes
that contain multiple objects. As mentioned earlier, the
minimum node size prevents excessive splitting of
octree nodes, limiting the depth of the tree. At a certain
point, the time involved in traversing a deep tree,
checking for intersections with the bounding volumes
of tree nodes along the way, can become more
expensive than simply checking for intersections with
individual objects.

Figure 8. Results with 8,192 objects

Figure 9. Comparison of octrees with
different minimum node sizes

5. Conclusion

There are a number of choices for spatial data
structures to use in 3D graphics applications, and it is
not obvious which ones perform best. As the results in
the previous section show, you may see different
results depending on the number of objects being
managed by the data structures, or on the values of
parameters such as the octree’s minimum node size.
Other factors may also have an impact, and the
developer of a real-time 3D application is encouraged
to measure the performance of multiple data structures
using methods such as those presented in this paper in
order to find the best data structures to use for a
particular application.

The source code for the simulation program has
been posted online, and its development will continue
as an open source project. Future work will involve
implementing more data structures, continuing to
optimize the data structures in order to achieve greater
performance, and porting the program to iOS, so that
the performance of these data structures can be
measured on a mobile platform. Readers who are
interested in this topic are encouraged to follow the
project [9].

6. References

[1] S. Shekhar and S. Chawla, Spatial Databases: A Tour, 1st
ed. Prentice Hall, 2003, ch. 1.

[2] T. Akenine-Möller and E. Haines, Real-Time Rendering,
2nd ed. Wellesley, MA: A K Peters, 2002, ch. 9, pp. 345-355.

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” ACM SIGMOD, vol. 14, no. 2, pp. 47-57,
Jun. 1984.

[4] J. T. Klosowski et al., “Efficient Collision Detection
Using Bounding Volume Hierarchies of k-DOPs,” IEEE
Transactions on Visualization and Computer Graphics, vol.
4, no. 1, pp. 21-36, Jan.-Mar. 1998.

[5] Z. Tang, “Octree Representation and Its Applications in
CAD,” Journal of Computer Science & Technology, vol. 7,
no. 1, pp. 29-38, 1992.

[6] M. S. Paterson and F. F. Yao, “Binary Partitions with
Applications to Hidden-Surface Removal and Solid
Modelling,” ACM Proceedings of the fifth annual symposium
on Computational geometry, pp. 23-32, 1989.

[7] J. L. Bentley, “Multidimensional Divide-and-Conquer,”
Communications of the ACM, vol. 23, no. 4, pp. 214-229,
Apr. 1980.

[8] K. Zhou et al., “Real-Time KD-Tree Construction on
Graphics Hardware,” ACM Transactions on Graphics, vol.
27, no. 5, Dec. 2008.

[9] J. Beam. (2016, Apr. 24). Spatial Data Structures
Simulation Program. [Online] Available: https://github.com/
joshb/SpatialDataStructures

https://github.com/joshb/SpatialDataStructures
https://github.com/joshb/SpatialDataStructures

	Exploring Spatial Data Management in 3D Graphics and Game Engines

