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Abstract

3D graphics applications and video games must 
manage and use a large amount of spatial data for a 
variety of tasks, including rendering, visibility 
determination, collision detection, and more. A variety 
of data structures and algorithms have been utilized in 
game engines, each with their own strengths and 
weaknesses depending on the types of spatial objects to 
be managed (such as moving and static objects).

This paper will describe several data structures 
for managing spatial data in real-time 3D graphics 
applications, and will present results from a simulation 
program developed to aid in measuring and comparing 
the performance of such data structures.

1. Introduction

3D graphics applications, and particularly video 
games, often involve a large amount of spatial data. 
The types of spatial data that may be found in video 
games include the polygons/geometry that make up 3D 
models and objects, the locations of objects, and 
bounding regions for the scene and objects (including 
both detailed bounding regions and approximations 
based on boxes, spheres, and cylinders).

In real-time 3D graphics applications, in which the 
scene may be rendered more than 60 times per second, 
efficiently managing and utilizing spatial data is an 
integral part of the development of multiple 
subsystems. Spatial data is used for tasks such as 
visibility determination, collision detection, rendering, 
and more.

Consider the task of collision detection. For a 
scene with thousands or millions of objects, it is not 
feasible to check each individual polygon against every 
other polygon to test for collisions. Instead, a filter/

refine process that is commonly applied in spatial 
databases [1] can be used. Approximate bounding 
regions, such as minimum bounding boxes, are utilized 
to quickly rule out collisions between two objects if 
their bounding regions do not intersect, and, in the 
event that they do intersect, more complex 
comparisons between the two objects can then be 
performed [1]. A spatial data structure such as an 
octree or Binary Space Partitioning (BSP) tree can also 
be used to group objects based on their location in 3D 
space, allowing the application to quickly eliminate the 
possibility of a collision between two objects that are 
clearly not near each other [2].

The management of spatial data in video games is 
complicated by the fact that some objects move, while 
others are stationary. It may be necessary to use 
different techniques for managing moving objects 
versus static objects, depending on the strengths and 
weaknesses of the data structures and algorithms 
involved. For example, if the algorithm for setting up a 
particular spatial data structure performs poorly but its 
algorithms for utilizing spatial data perform very well, 
it may be good to use for static objects, because the set 
up process only needs to be performed once and the 
resulting data structure can be precomputed and stored 
for later use [2]. Such an algorithm would not be 
optimal for moving objects, however, because the data 
structure must be adjusted in real-time as objects move 
throughout the scene, and the structure may not 
perform efficiently as changes are made [2].

Given this reliance on spatial data, it’s no surprise 
that game engines often apply well-known spatial data 
structures and algorithms (similar to those used in 
spatial database management systems) in order to 
achieve optimal performance. This report will explore 
several spatial data structures that are suitable for use 
in game development, discussing the strengths and 
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weaknesses of each for such applications. Simulations 
will be used to determine the relative performance of 
some of these data structures when managing large 
amounts of both moving and static objects.

2. Data Structures

Data structures traditionally used in spatial 
databases, such as the R-Tree [3], may be used in 3D 
graphics applications, but several other data structures 
are more frequently used. In this section, we will 
discuss several of the spatial data structures that are 
suitable for use in real-time 3D graphics applications.

As mentioned previously, a 3D graphics 
application may need to adjust its spatial data 
structures in real-time as objects move across the 
scene; therefore, we are concerned not only with the 
speed of traversing the data structure and accessing the 
objects contained within it, but also the time required 
to set up the data structure and modify it as necessary. 
Note also that, although it may be possible to adjust a 
data structure in real-time, it may not be possible to 
adjust it in an optimal manner in real-time, and so the 
data structure may not perform efficiently as changes 
are made while running the application [2].

2.1. Bounding Volume Hierarchy

The Bounding Volume Hierarchy (BVH) is a 
simple variation of the tree data structure that is 
familiar to most computer scientists and software 
engineers, where each node is associated with a 
bounding volume, which may be represented by a 
sphere, a box, a cylinder, or any other sort of three-
dimensional object that is appropriate [2, 4]. The 
bounding volume for a node must simply enclose the 
bounding volume for every one of its child nodes (or, 
in the case of a leaf node, its bounding volume must 
enclose the objects in the node).

Figure 1 provides a visual representation of such a 
hierarchy utilizing a box and two spheres as bounding 
volumes. The root node of the hierarchy is a box that 
has two child nodes that are spheres, each containing 
two objects. The goal is to obtain a balanced tree by 
grouping a similar number of objects together based on 
their proximity to each other. In this example, the two 
objects in the upper left are reasonably close to each 
other, so they are placed in one child node. Similarly, 

the two objects in the lower right of the figure are close 
to each other and placed in another child node.

The purpose of the hierarchy is to speed up the 
process of querying for objects based on point data (for 
example, to determine whether an object is visible to 
the user or to detect collisions between objects). 
Imagine that we have been given a point that happens 
to lie within the green triangle in the upper left portion 
of the figure; we first check to see whether or not the 
point is within the root node of the hierarchy. It is, so 
we next check to see which (if any) of the root’s child 
nodes the point is within; we find that it is within child 
node 1, so we can then perform the appropriate checks 
to see whether or not the point is inside any object in 
the child node. With this hierarchy, we did not need to 
check the objects in child node 2 at all.

The Bounding Volume Hierarchy provides a 
tremendous amount of flexibility, as there is no 
restriction on the types of bounding volumes that may 
be used. This data structure can lead to good 
performance for static objects, for which as much 
preprocessing time as is needed can be devoted to 
constructing an optimal hierarchy, but is not ideal for 
moving objects; when objects move, the hierarchy will 
need to be reconstructed such that objects that are near 
each other are grouped together in an optimal fashion, 
which may require a lot of processing time when there 
are many objects [2]. This required processing time 

Figure 1. Bounding Volume Hierarchy



may make the data structure infeasible for managing 
moving objects in real-time.

2.2. Octree

The octree is the natural three-dimensional 
extension of the quadtree (a popular data structure for 
organizing two-dimensional spatial data), in which 
each node is represented by a box and may be 
subdivided into eight equally sized child nodes [2, 5].

The root node is a box that encloses the entire 
space of the scene. This node is split in the middle of 
each of the three dimensions, resulting in eight child 
nodes. This process may be repeated recursively, until 
a node contains no more than one object, or until the 
leaf nodes reach a minimum size, which can prevent 
excessive splitting of nodes when objects are clustered 
together.

F igure 2 shows a top-down graph ica l 
representation of an octree (which, in this two-
dimensional representation, appears the same as a 
quadtree would). The outer-most square represents the 
root node of the octree, which is the first node to be 
subdivided into child nodes. Of these child nodes, only 
the one in the bottom right contains more than one 
object and needs to be subdivided further, so it is the 
second node to be split.

At this point, no node in Figure 2 contains more 
than one object, so splitting can stop there [2]. Ending 
the splitting process this way results in leaf nodes with 
non-uniform sizes. Another option is to keep splitting 
until each leaf node reaches a certain minimum size, 
resulting in leaf nodes with uniform sizes (Figure 3). 
The latter method is advantageous when there are 
moving objects because the entire octree can be built 
upfront without nodes having to be added and/or 
removed as objects are added, removed, or 
repositioned throughout the scene.

The key advantage of the octree compared to the 
Bounding Volume Hierarchy is its predictable structure 
[2]. There is no need for a complex mechanism to 
determine the optimal way to divide each node; either 
a node needs to be divided or it doesn’t, depending on 
the number of objects that it encloses and/or its size. 
This makes the data structure effective for managing 
moving objects as well as static objects.

2.3. Binary Space Partitioning (BSP) Tree

The Binary Space Partitioning (or BSP) Tree is a 
binary tree structure in which each node divides space 
along a plane, resulting in two child nodes that 
represent space on either side of the plane, which may 
be boxes in the case of an axis-aligned BSP tree [2, 6]. 

Figure 2. Octree (non-uniform leaf nodes)

Figure 3. Octree (uniform leaf nodes)



Typically, this dividing continues recursively until each 
leaf node of the tree contains only one object.

A graphical representation of a BSP tree can be 
seen in Figure 4. In this example, the enclosing square 
represents the root node of a BSP tree containing five 
objects. The root node is first divided along the plane 
represented by line 1, resulting in two child nodes, one 
of which contains the star at the bottom, and the other 
containing the other four objects. The latter node is 
split along the plane represented by line 2, resulting in 
two child nodes containing two objects each, and these 
child nodes are finally split along the planes 
represented by lines 3 and 4 to obtain the final BSP tree 
containing just one object per leaf node.

While the BSP tree described above is valid, it is 
not optimal, because one child of the root node 
contains just one object while the other contains four; 
it is preferable to achieve a more balanced BSP tree for 
performance reasons, and coming up with such an 
optimal tree may require extensive processing if there 
are many objects [2, 6]. For this reason, BSP trees are 
better suited for managing static objects, rather than 
moving objects.

2.4. k-d Tree

The last data structure that we will discuss is the 
k-d Tree, a binary tree structure that stores k-

dimensional points [7, 8]. In our case, k would be equal 
to three, for three dimensions.

Each node in a k-d Tree represents a point, and has 
two child nodes, which can be called left and right. 
Each node also specifies a dimension d such that 1 ≤ d 
≤ k. This dimension is used to divide space between the  
left and right child nodes of a node; for any point p 
stored beneath a node, if that point has a lesser value in 
dimension d than the point that the node represents, 
then p should be stored somewhere in the left child of 
the node, otherwise it should be stored in the right 
child of the node [7, 8].

This is illustrated in Figure 5. In this example, 
point 1 is the root node of the tree, and its d value is 2 
to specify the Y dimension. The point below the 
horizontal line intersecting point 1 becomes the left 
child of point 1, and one of the points above can be 
chosen as the right child. Point 2 is chosen as the right 
child, and its d value is 1 to specify the X dimension, 
so the remaining point to the left of the vertical line 
intersecting point 2 becomes the left child of point 2. 
There is no right child for point 2 because there are no 
points to the right of the vertical line.

This data structure has traditionally been used for 
static data, but there has been research into generating 
k-d trees dynamically [8].

Figure 4. Binary Space Partitioning Tree

Figure 5. k-d Tree



3. Evaluating the Data Structures

Now that we understand some of the available 
options for spatial data structures that can be utilized in 
3D graphics applications, we can compare them to 
determine which ones give the best performance in a 
given scenario.

One way to accomplish this is to set up a scene 
containing many objects, both static and moving, and 
to measure the performance of the scene when utilizing 
different combinations of data structures. For this 
paper, that task was accomplished with the aid of a 
custom program that was developed to simulate such a 
scene [9]. The program features a scene with many 
objects, and allows the user to select different data 
structures to use for static and moving objects in order 
to see how each combination performs. A screenshot of 
the program can be seen in Figure 6.

3.1. Program Functionality

The program is a Mac OS X application written in 
the Swift programming language. It uses OpenGL for 
graphics rendering. At the top of the program’s user 
interface are three dropdown lists, for selecting a static 
object data structure, a moving object data structure, 
and the number of objects to include in the scene (half 
of the selected number are created as static objects, 
while the other half consists of moving objects).

The bottom of the window includes checkboxes 
for enabling/disabling scene rendering, tree rendering, 
and collision detection. Disabling scene rendering can 

be used to ensure that graphics rendering is not the 
bottleneck when using the program to evaluate data 
structures. Tree rendering can be used to visualize the 
data structures that the program generates. Enabling 
and disabling collision detection can be used to verify 
that querying the data structure for intersecting objects 
has the biggest impact on performance. The counter in 
the lower right corner of the window shows the 
number of milliseconds spent processing each frame 
that is rendered; for example, when rendering a scene 
containing many objects, the program may spend 300 
milliseconds per frame if collision detection is enabled, 
but only 100 milliseconds per frame if it is disabled. 
This shows that the performance of the spatial data 
structures containing objects is critical to the overall 
performance of the simulation.

The program also includes the ability to 
automatically measure the performance of each 
combination of static object data structure, moving 
object data structure, and number of objects, exporting 
the results to a Comma-Separated Values (CSV) file 
that can then be imported into a spreadsheet and used 
to generate charts. This functionality was used to 
generate the charts that appear later in this paper.

3.2. Design and Implementation

The program’s source code was designed to allow 
for easy modification and addition of data structures. 
Each data structure implemented in the program 
conforms to a Swift protocol named SpatialTree, which 
is defined as follows:

protocol SpatialTree {
    var box: Box { get }
    var subtrees: [SpatialTree] { get }
    var objects: Set<SpatialObject>{ get }
    func optimize()
    func addObject(obj: SpatialObject)
        -> Bool
    func removeObject(obj: SpatialObject)
        -> Bool
}

 
Every class that implements a data structure 

conforms to the above protocol, allowing one data 
structure to easily be replaced with another. This 
interface also simplifies the process of implementing 
new data structures.

An instance of a class implementing the 
SpatialTree protocol represents a node in a tree-based 

Figure 6. Simulation Program



data structure, such as those presented earlier in this 
paper. Each node has a bounding box, any number of 
subtrees (each node can be considered the root of its 
own tree, hence child nodes are referred to as subtrees 
in the code), and a set of objects contained in the node, 
represented by instances of the SpatialObject class.

As discussed earlier, some data structures, such as 
the BSP tree, may be optimized for performance 
reasons. Data structures may implement the 
SpatialTree protocol’s optimize function in order to 
optimize their structure. The simulation program calls 
this function after generating trees of static objects, but 
not for trees of dynamic objects, since dynamic objects 
move throughout the scene as the program runs and the 
optimization code may be too costly to keep running as 
objects move. For data structures that do not require 
optimization code (such as the octree), this function 
may do nothing.

The addObject and removeObject functions 
simply add an object to or remove an object from the 
data structure. Additional functionality that is common 
to each data structure is implemented in a Swift 
protocol extension. For example, the updateObject 
function will remove an object and add it back to the 
data structure taking its current position into account, 
which may have changed since the object was 
previously added to the data structure if it is a moving 
object. The findIntersectingObjects function will return 
a set of objects contained in the data structure that 
intersect the given object.

The functions defined by the SpatialTree protocol 
operate on objects represented by the SpatialObject 
class. The most important property of this class is 
boundingVolume, which represents the object’s 
bounding volume. This property is always a sphere 
(consisting of a three-dimensional position and a 
radius) in the simulation program, since all of the static 
and dynamic objects that are generated are spheres.

3.3. Data Structure Implementation

When it came time to implement data structures 
for the simulation program, the decision was made to 
focus on the octree and the axis-aligned BSP tree, as 
they presented the most different approaches among 
the data structures discussed in this paper, and the 
other data structures are similar to them; an octree can 
be seen as a more rigidly structured Bounding Volume 
Hierarchy, while the k-d tree is a variant of the axis-

aligned BSP tree [2]. For the exact details of the 
included data structure implementations, refer to the 
source code for the simulation program [9].

A portion of the Octree class definition is included 
below:

class Octree: SpatialTree {
    var box: Box
    var subtrees: [SpatialTree] = []
    var objects = Set<SpatialObject>()

    var minSize: Float

    init(_ box: Box, _ minSize: Float = 
10.0) {
        self.box = box
        self.minSize = minSize
    }

    var subBoxes: [Box] {
        let min = box.min
        let max = box.max
        let mid = box.mid

        return [
            Box(min: Vector3(min.x, min.y, 
min.z), max: Vector3(mid.x, mid.y, 
mid.z)),
            ...
        ]
    }

    private func split() {
        let size = box.size
        if size.x < minSize &&
           size.y < minSize &&
           size.z < minSize {
            return
        }

        subtrees = 
subBoxes.flatMap({ Octree($0, minSize) })

        ...
    }

    ...
}

As mentioned in Section 2.2, there are two 
methods that can be utilized for octree construction: 
either tree nodes can be created and removed as needed 
when objects are added to or removed from the data 
structure, or all nodes can be created upfront so that 
they do not need to be created and removed 
dynamically. During the development of the simulation 
program, both methods were tested, and they were 
found to be similar in performance, so the first method 



was used in the final implementation of the data 
structure. The subBoxes property in the code above 
returns an array of the eight bounding boxes for the 
subtrees of the current octree node (for brevity, the 
construction of only one such box is shown in the code 
above; the construction of the other seven boxes is 
similar). The split function then uses these bounding 
boxes to create the subtrees if the tree has not reached 
a given minimum node size in each dimension.

The addObject function from the Octree class is 
shown below:

func addObject(obj: SpatialObject)->Bool {
    if objects.contains(obj) {
        return true
    }
        
    if !objectInTreeBox(obj) {
        return false
    }

    objects.insert(obj)

    if subtrees.count == 0 {
        if objects.count > 1 {
            split()
        }
    } else {
        for subtree in subtrees {
            subtree.addObject(obj)
        }
    }

    return true
}

When an object is added to a leaf node of the tree 
(that is, the node has zero subtrees), the node will be 
split into eight subtrees if there are now multiple 
objects inside of it; otherwise, if the node has already 
been split, then the object is recursively added to any 
subtrees that it intersects.

The removeObject function includes logic to 
merge a node by removing its subtrees:

func removeObject(obj: SpatialObject)
        -> Bool {
    if objects.remove(obj) == nil {
        return false
    }

    if subtrees.count != 0 {
        if objects.count < 2 {
            merge()
        } else {
            for subtree in subtrees {
                subtree.removeObject(obj)

            }
        }
    }

    return true
}

If removing an object from a node results in it 
having fewer than two objects, then the node is 
merged; otherwise, the object is recursively removed 
from the node’s subtrees.

The implementations of the addObject and 
removeObject functions in the BSPTree class are 
similar, although the method of splitting a BSP node is 
different. When a BSP leaf node has a second object 
added to it, the node is split in the dimension which has 
the greatest distance between the two objects.

It should be noted that splitting and merging BSP 
nodes in real-time as objects are added to and removed 
from the tree will result in the tree becoming  
unbalanced over time [2]. The BSPTree class 
implements the optimize function to alleviate this for 
static objects; it attempts to optimize the tree such that 
each of the two subtrees of a node containing multiple 
objects will contain roughly half of the objects 
contained in the node. Rebuilding the tree in this way 
results in optimal performance when accessing it.

4. Simulation Results

We will now take a look at some results from the 
simulation program. These results were obtained by 
running the program on an Apple MacBook Pro 
computer containing a 2.3 GHz Intel Core i5 processor 
and 8 GB of memory. Figure 7 shows the performance 

Figure 7. Results with 32 to 512 objects



of different data structure combinations with 32 to 512 
objects.

The legend at the top of the figure shows different 
combinations of data structures represented in the 
chart, where the static object data structure is given 
before the slash and the moving object data structure is 
after. The horizontal axis shows the number of objects 
along the bottom of the figure, while the vertical axis 
shows the number of milliseconds required for 
processing each frame along the left side of the figure, 
so smaller values are better. For smaller numbers of 
objects, as represented in this chart, using a BSP tree 
for both static and moving objects gives the best 
results.

For larger numbers of objects, however, we see 
different results. Figure 8 shows the performance of the 
data structures for 8,192 objects.

With a large number of objects, the octree 
performs better, with the best performance seen when 
using an octree for both static and moving objects.

A possible explanation for this is the fact that there 
is more overhead involved in checking for 
intersections between objects and tree node bounding 
volumes in an octree. Each node that has subtrees has 
exactly eight subtrees which all must be checked when 
checking for intersecting objects, which makes a large 
impact when there are fewer objects.

As the number of objects increases, this overhead 
has a lesser impact, and the octree’s ability to eliminate 
a larger fraction of space from consideration at each 
level of the tree results in improved performance. The 
predictable structure of the octree may also contribute 
to this improved performance as the number of objects 

increases, because there is less work involved in 
determining how best to split each node.

As shown in the code for the Octree class, one of 
the parameters for the data structure is a minimum 
node size, which causes the class to stop subdividing 
once a node has reached that size in each dimension.  
For the results shown in Figure 7 and Figure 8, a value 
of 25 was used. Another test was run to compare 
octrees with different values for this size; Figure 9 
shows the results, again when processing a scene with 
8,192 objects (the minimum node size is shown in 
parentheses in the legend above the chart; the same 
size was used for both static and moving objects).

The optimal minimum node size depends 
primarily on the proximity of the objects in the scene. 
Of the minimum node sizes tested with the simulation 
program, the best performance is seen with a value of 
10, which results in processing times about twice as 
fast as with values of 25 or 2.

The minimum node size also helps explain why 
octrees perform better than BSP trees with a large 
number of objects in the simulation program: the BSP 
tree is subdivided until each object has its own leaf 
node, whereas the octree can end up with leaf nodes 
that contain multiple objects. As mentioned earlier, the 
minimum node size prevents excessive splitting of 
octree nodes, limiting the depth of the tree. At a certain 
point, the time involved in traversing a deep tree, 
checking for intersections with the bounding volumes 
of tree nodes along the way, can become more 
expensive than simply checking for intersections with 
individual objects.

Figure 8. Results with 8,192 objects

Figure 9. Comparison of octrees with 
different minimum node sizes



5. Conclusion

There are a number of choices for spatial data 
structures to use in 3D graphics applications, and it is 
not obvious which ones perform best. As the results in 
the previous section show, you may see different 
results depending on the number of objects being 
managed by the data structures, or on the values of 
parameters such as the octree’s minimum node size. 
Other factors may also have an impact, and the 
developer of a real-time 3D application is encouraged 
to measure the performance of multiple data structures 
using methods such as those presented in this paper in 
order to find the best data structures to use for a 
particular application.

The source code for the simulation program has 
been posted online, and its development will continue 
as an open source project.  Future work will involve 
implementing more data structures, continuing to 
optimize the data structures in order to achieve greater 
performance, and porting the program to iOS, so that 
the performance of these data structures can be 
measured on a mobile platform. Readers who are 
interested in this topic are encouraged to follow the 
project [9].
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